高功率LED照明散熱控制方案突破
摘要: 目前HB LED通用照明的一個最大商業化障礙就是其散熱問題,因此能否徹底有效地解決這問題可以說是贏得客戶的關鍵。本文將為你分享Zetex的LED照明專家在解決散熱問題時的獨到經驗。
與白熾燈鎢絲燈泡不同,高功率LED不輻射熱量。與之相反,LED將其PN結的熱量傳導到LED封裝的散熱金屬小塊上。由于LED產生的熱量采用傳導方式散發,因此這些熱量需要一個更長、更昂貴的路徑才能完全散發到空氣中去。目前HB LED通用照明的一個最大商業化障礙就是其散熱問題,因此能否徹底有效地解決這問題可以說是贏得客戶的關鍵。本文將為你分享Zetex的LED照明專家在解決散熱問題時的獨到經驗。
在迅速發展的LED照明設計中,大多數人將注意力集中在高亮度(HB)LED的調光控制策略上。不過,HB LED照明應用的本質要求我們將更多的注意力轉移到散熱控制上。
雖然LED制造商通過大幅提高每瓦的流明數正在降低HB LED照明設計的技術障礙,但與光輸出相比,仍有更多的電能轉化為要散發出去的熱量。因此需要一個散熱管理的總體戰略,以確保LED散發的熱量可控制為一個溫度的函數。
圖1中曲線顯示了1W LED的典型性能下降特性。正如所期望的那樣,這清楚地表明,被恒定電流驅動的LED在到達某一點后,該恒流需要線性地減少,直到在150℃這一點上達到0。恒流下降點和減小斜率取決于機械/散熱安排。
因此電子控制電路必須能夠處理觸發點設置和增益設置。另外需要記住的很重要一點是, 事實上LED需要能夠應付三個潛在的散熱源:自發熱、環境溫度和LED電子控制。如果LED照明采用的是遠程電子控制,那么這將不是一個問題,不過EMC可能是一個問題。
如果我們再去翻教科書的話,我們會發現控制LED的第一個和最明顯的方法是通過一個電阻。雖然這是一個低成本的方法,但它不可避免地會導致功率損耗,而這否定或削弱了LED的關鍵效率屬性。
使用可變電阻作為調光元件的方法對HB LED來說也是不切實際的,因為電阻上消耗的功率太大了,而且需要專用的繞線電阻。舉例來說,為了驅動一個1W LED,需要從12V電源產生350毫安電流,在全亮度時,約2.5W將被浪費在調光電阻上。而且如果電阻與LED的位置很接近,該電阻產生的附加熱量將只會使散熱問題變得更加嚴重。
當然,導通元件也可以是晶體管,這意味著功耗發生在晶體管,而不是可變電阻上。這種方法通過生成對數響應、以及用于熱控制和亮度定義的負(NTC)或正(PTC)溫度系數熱敏電阻,提供了更多的靈活性。然后,只要稍加一點想象力就可以很容易地想到用光反饋方法來進行自動亮度控制。
晶體管可采用任何類型:MOSFET、NPN雙極型或PNP雙極型。令人驚訝的是,一些更崇拜數字技術的工程師仍然認為,MOSFET是這一應用的更好選擇,因為它們的低導通電阻!但事實上,不管你選擇什么類型的硅晶體管,其線性功耗是一樣的。它仍是以熱形式表現出來的浪費的功率,而且這一熱量需要設計師考慮如何散發出去。
利用熱敏電阻的LED散熱控制的最簡單實現方法采用了一個PTC元件。這是一個熱復位保險絲,它可以用來作為一個過流或過熱保護元件,如果它緊靠LED安裝的話。這里需要考慮到安全因素。
PTC元件提高了隨溫度增長的標稱低電阻,一直到其觸發點。因此,它并不起隔離作用。PTC是一個非線性元件,當溫度升到約125℃時它會產生一個有效的開關動作。但到達這一點以前,溫度并不會以某種受控方式隨著LED電流降額曲線而減少。
此外,LED照明策略會由于過溫情況而要求一個零光輸出嗎?LED的主要用途是照明而不是自我保護。過熱和降溫可能導致一個熱循環,而這將導致LED的低頻閃爍。
NTC熱敏電阻的電阻值會隨著溫度產生連續的但非線性的變化。隨溫度的變化值取決于特定NTC元件的β值,典型的數字是2700、3590和4400。標稱電阻值通常指的是25℃下的數值,目前市面上的NTC熱敏電阻的電阻值從10歐姆到幾兆歐姆不等。
與線性或開關穩壓器一起使用時,熱敏電阻通常用作控制元件。電阻隨溫度的變化值可以通過一個公式計算出來,但通常以-40℃至150℃溫度范圍內的一個電阻值表表達出來。
表1:該表顯示了一個典型的10kΩ標稱熱敏電阻在3個不同β值時的電阻值。
就如同在生活中常常發生的情況一樣,熱敏電阻的非線性響應在你希望它最敏感的區域常常只有最小的靈敏度。在較低溫度下,電阻的變化要比在更高的溫度時更為顯著。因此可以總結為,β值越大,隨著溫度的升高電阻下降得更快。見圖2所示。通過并聯一個適當的電阻,響應可以變得更線性。
圖2:熱敏電阻值隨溫度的典型變化圖
溫度傳感器的位置也非常重要,因為它需要安裝在離LED的裸片盡可能近的地方,以避免在LED溫度升高時的熱梯度和響應延遲。
如果我們再回過去看第一部分的圖1,很顯然,必須更多地考慮溫度較低時的情況。如果熱敏電阻在控制電路中的作用是,在溫度升高時降低電流,那么它也有可能在溫度降低時提高電流。這可能會導致LED的瞬態過熱,并使得結溫超過其額定值。LED的自發熱問題可以自我控制的方法解決,但其隱含的熱應力問題是我們不希望看到的。因此更好的方法是采用一個鉗位配置,以確保電流不會隨著溫度下降而繼續增加。
圖3顯示了一個典型的采用簡單熱控制的降壓穩壓器例子。它的優勢是利用了Zetex半導體公司ZXLD1350的ADJ引腳。通過使用一個PNP晶體管作為發射極跟隨器和使用該引腳的內部250kΩ電阻作為負載來過驅該引腳,LED電流將與熱敏電阻成比例地下降。隨著溫度下降,熱敏電阻的阻值增加,但由于基準(base)電壓增加超出了ADJ參考電壓,該晶體管就會關閉,LED僅獲得其最高設置電流,從而有效地鉗住低溫響應。
凡注明為其它來源的信息,均轉載自其它媒體,轉載目的在于傳遞更多信息,并不代表本網贊同其觀點及對其真實性負責。
用戶名: 密碼: